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Abstract —Finding many higher modes in ferrite loaded
waveguide becomes mandatory when dealing with disconti-
nuitiesin accurate component design. It iswell known, how-
ever, that thisis a very difficult task in practice. In this con-
tribution we report a novel approach to this problem based
on the explicit eigenvalue formulation of the vector telegra-
pher’s equations applied to the anisotropic uniform
waveguide and discretized by using the actual modes taken
at cut-off as an expanding set. Theoretical results are com-
pared with existing ones for the case of longitudinally mag-
netized fully and partially loaded waveguide with very good
agreement. The resulting algorithm is compact and it re-
quires extremely low computational effort for evaluating as
many modal characteristics and vector fieldsasrequired.

|. INTRODUCTION

Cylindrical waveguides containing longitudinally mag-
netized ferrite are widely used in microwave devices such
us circulators, isolators, phase shifters and control com-
ponents, [1], [2]. The anisotropic material in such devices
exhibits non-reciprocal behavior in presence of an exter-
nal bias magnetic field, [3]. Knowledge of the propaga-
tion characteristics such as cutoff planes and phase con-
stants of many modes is of considerable importance in the
accurate design of actual components. An extensive
analysis of cut-off phenomena in a longitudinaly-
magnetized ferrite-filled circular waveguide is reported in
[4]-[6]. The analysis of the propagation in fully and par-
tidly filled waveguide is reported in [3], where the vector
solutions are derived from a pair of coupled wave equa-
tions for the longitudina electric and magnetic field
components. The difficulty in [3] arises in actually solv-
ing numerically an implicit trascendental characteristic
equation with spurious solutions and crossing dispersion
curves that are hard to follow. In [7] cut-off and phase
constants of partially filled axially magnetized ferrite-
loaded guides are calculated using the numerica Finite
Element Method (FEM); the disadvantage here occurs in
the extremely heavy computational effort. In both cases,
the derivation is practically limited to the first few higher
order modes.

The goal of the present approach is an efficient and
compact algorithm for the accurate spurious-free deter-
mination of propagation characteristics and behavior of
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very many hybrid modes. The method leads to an explicit
and analytical formulation of the eigenvalue equation,
thus avoiding the limits of [3] and [7]. An analogous ap-
proach has been introduced in [8] for the analysis planar
structures of complex shape. The essential step of the
method is the derivation of generalized vector telegra-
pher’s equation governing the propagation of the trans-
verse field in waveguides loaded by anisotropic media. In
the past, generalized vector telegrapher’s equations have
only been derived only for isotropic media[9].

The telegrapher’s equation are then discretized by ex-
panding the transverse field in terms of the actual modes
taken at cutoff, which congtitute a set of frequency-
independent real vector fields implicitly satisfying all
boundary and edge conditions of the problem. These are
in fact the 3-component modes of a 2D-resonator coin-
ciding with the guide cross-section. The above position
leads to an explicit linear eigenvalue matrix equation that
is easily solved with minor computational effort. Numeri-
cal results produced by the present method are then com-
pared with data reported in literature, showing very good
agreement.

Il. THEORY

We report without derivation the field equations for the
propagation of the transverse field along the guide, in
absence of sources:
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where: Ei(X,y,2)=Ei(X,y)e®, H(X,y,2)=Hi(X,y)e® are the
trasverse components (respect to the z-direction) of the
hybrid field. We consider the permeability tensor min its
general form, with 3x3 components:

grL m, mag
m=mm - m=an, m, my
gm, m, mH

In egs.(1) my is the row vector (M, my), M, is the column
vector (m,, m,) and m is the transverse-to-transverse
block of m. Dually, generalized telegrapher’s equation for
the tensor e can be derived.

By considering the longitudinal magnetization as in [3]
the tensor m reduces to:
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Setting in (1) m,=0, m;=0 we derive:
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In the case of partially or totally ferrite filled waveguide
propagation is hybrid in general. The resulting modes are
caled: i) EH-modes if E; is dominant, ii) HE-modes if H,
is dominant, [3]. We now select the actual modes taken at
cut-off as the expanding set for the transverse field by
setting g=0 in eq.(1). Consequently, the hybrid modes
propagating in the normal z-direction reduce to pure rea
TE/TM modes. In particular, HE modes reduce to TE
modes and EH modes reduce to TM modes. In fact, at
cut-off:

e (xy) =0 (43)

h"(xy)=0 (4b)

e(xy)=€e"(xy)
h. (% y) =h{"(x,y)
Now we expand the transverse fields as:

Ew)= aVew)h,  2)+ aViw)e, (3
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where the k-index spans the TE (h) modes and the TM (€)
modes. &, h;, are real and frequency-independent whe-
reas the expansion coefficients Vi&, Vi, 1,5, 1" contain
the frequency dependence. It can be aso be seen from (2)
that the TE/TM components at cutoff are solutions of the
following transverse equations:
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Now by substituting egs.(5) in (2) and exploiting the
above properties (6) and (7), we derive a particularly sim-
ple, discretized matrix version of (2).
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where Wes ,\Wew 1S the k-cutoff frequency for the k- TM/TE
component, respectively. A, C, D, F and G are square-
matrices (n x n) obtained by forming the scalar products
between (htk* X 2), e (k=1,...,n) and the discretized
equation version of (2a) and (2b) x z, respectively. Surfa-
ce integration is performed over the cross section S. The
above real matrices represent the overlapping of the ex-
panding cut-off modes. For example:

A, ALl *
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Az is the Hermitian conjugate of Aj,. Each of the two
systems (9a) and (9b) is constituted by 2n-linear equa-
tions for the 4n unknown expanding coefficients th, Vke,
Ikh, 1L, (k=1..n); therefore (9a) and (9b) can be combined
in order to form a single s%/stem characterized by 2n
equations for Vi ", V& (or 1, 1,%); its determinant is a
polynomial equation for the square of the complex propa-
gation constant, ¢¢. Now, if we pre-multiply (9a) by A™
(the inverse of A, assumed non-singular) divide both
members by g and substitute | from the above equation in
(9b), we abtain:
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In the above eq.(10) we recognize a generalized eigenva-
lue problem for ¢, whose derivation was our main con-
cern. Once the frequency is fixed, each eigenvalue ¢(w)
also yields the corresponding eigenvector V, which, in
turn, gives the transverse modal electric field E; in (5a).
The other eigenvector, | producing H; in (5b), can be
easily derived from (98). The longitudinal components E,
and H, are evaluated in terms of the transverse field, asin

(8].

I1l. RESULTS

The method described above is now applied to the
problem of finding cutoff planes and phase constants for
various TE and TM modes of cylindrical waveguides
containing longitudinally magnetized ferrite. Fig.1 shows
the analyzed ferrite loaded waveguide with electric walls
and radius a. As discussed in the previous section, the
first step of the method is an initial calculation and stor-
age of cutoff frequencies and fields of the TE/TM modes.
This is done by setting a priori g=0 in the curl eguations
and solving two decoupled scalar wave equations. In fig.
2, we report the cutoff planes for the first three modes; we
have koag™? versus k,/m being & the dielectric constant of
the ferrite and k,, melements of the the tensor m defined
in (1). We observe that HE,.,, (TE..) modes are independ-
ent of the magnetization, while EH,,, (TM,,,) modes have
cutoff numbers incressing with k. The results obtained
by the present method are compared with those reported
in [3], [7], with very good agreement. Now we insert the
above calculated cutoff modes in (5) and solve eq.(10).
We then use its solutions in the transverse field expansion
(5) in order to form the “modes’ of the present method.
The simplest choice is to insert a single TE or TM mode
(k=1) in order to reconstruct the dispersion curves re-
ported in the literature and compare results. In Fig.3 we
calculate the phase constant for the dominant HE,; mode,
(b/k, versus ky/m) The results are compared to the ones in
[7], with very good agreement. An important property of
the waveguide being analyzed is that while the phase con-
stant of its dominant HE,; mode splits in two curves (de-
noted as HE.;, HE.), the corresponding cutoff number
does not.

Fig.4 shows the phase constants for the second and third
modes with kia=0.75, where ko is the free-space wave
number. Fig.5 shows the first three modes with kea=1,
respectively. Now we andyze the partialy-filled
waveguide. In Fig.6 we report the propagation curves
(b/ko versus b/d) as afunction of the parameter kp, (n¥1),
being a and b the radii of the waveguide and of the load-
ing ferrite, respectively. It is noteworthy to note that all
curves together are calculated in the computing time of
some CPU-seconds on a norma 500 MHz PC. Neither
spurious solutions are present nor difficulty is found in
tracking modal dispersion curves.

IV. CONCLUSIONS

The authors present a novel approach to the full-wave
analysis of the propagation in ferrite-loaded waveguide.
Thisis based on the explicit eigenvalue formulation of the
generalized vector telegrapher’s equations applied to the
anisotropic uniform waveguide, and discretized by using
the modes taken at cut-off as an expanding set. The re-
sulting algorithm is theoretically compact, efficient and
able to find and trace very many dispersion curves and
fields with extremely low computational CPU-time and
Nno spurious solutions.

Theoretical results are compared with data in literature,
for the first modes, with very good agreement.
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Fig.1.Cylindrical waveguide of radius a containing a co- Fig.4. Phase constants for the second and third modes with
axial ferrite cylinder of radius b, longitudinally magnet- k,a=0.75. Present method: continuous lines. Data from [6]:
ized. squares.
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Fig. 2 Cutoff planes for the first three TE/TM modes
(kOae™* versus ky/m) calculated by the present method
(continuos lines) and compared with those from [6],
(squares). s.6-
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Fig.5. Phase constants for the first three modes with kea=1.
Present method: continuous lines.
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Fig. 3 Phase constant for the dominant HE;; mode, Fig.6 Partialy filled waveguide. Propagation curves
(b/ko -kp/m) compared with data in [6]. Present method: (b/ko versus b/a) as afunction of k,, (mF1).
continuous line. Data from [6]: squares.
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