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Abstract —Finding many higher modes in ferrite loaded
waveguide becomes mandatory when dealing with disconti-
nuities in accurate component design. It is well known, how-
ever, that this is a very difficult task in practice. In this con-
tribution we report a novel approach to this problem based
on the explicit eigenvalue formulation of the vector telegra-
pher’s equations applied to the anisotropic uniform
waveguide and discretized by using the actual modes taken
at cut-off as an expanding set. Theoretical results are com-
pared with existing ones for the case of longitudinally mag-
netized fully and partially loaded waveguide with very good
agreement. The resulting algorithm is compact and it re-
quires extremely low computational effort for evaluating as
many modal characteristics and vector fields as required.

I. INTRODUCTION

Cylindrical waveguides containing longitudinally mag-
netized ferrite are widely used in microwave devices such
us circulators, isolators, phase shifters and control com-
ponents, [1], [2]. The anisotropic material in such devices
exhibits non-reciprocal behavior in presence of an exter-
nal bias magnetic field, [3]. Knowledge of the propaga-
tion characteristics such as cutoff planes and phase con-
stants of many modes is of considerable importance in the
accurate design of actual components. An extensive
analysis of cut-off phenomena in a longitudinally-
magnetized ferrite-filled circular waveguide is reported in
[4]-[6]. The analysis of the propagation in fully and par-
tially filled waveguide is reported in [3], where the vector
solutions are derived from a pair of coupled wave equa-
tions for the longitudinal electric and magnetic field
components. The difficulty in [3] arises in actually solv-
ing numerically an implicit trascendental characteristic
equation with spurious solutions and crossing dispersion
curves that are hard to follow. In [7] cut-off and phase
constants of partially filled axially magnetized ferrite-
loaded guides are calculated using the numerical Finite
Element Method (FEM); the disadvantage here occurs in
the extremely heavy computational effort. In both cases,
the derivation is practically limited to the first few higher
order modes.

The goal of the present approach is an efficient and
compact algorithm for the accurate spurious-free deter-
mination of propagation characteristics and behavior of

very many hybrid modes. The method leads to an explicit
and analytical formulation of the eigenvalue equation,
thus avoiding the limits of [3] and [7]. An analogous ap-
proach has been introduced in [8] for the analysis planar
structures of complex shape. The essential step of the
method is the derivation of generalized vector telegra-
pher’s equation governing the propagation of the trans-
verse field in waveguides loaded by anisotropic media. In
the past, generalized vector telegrapher’s equations have
only been derived only for isotropic media [9].

The telegrapher’s equation are then discretized by ex-
panding the transverse field in terms of the actual modes
taken at cutoff, which constitute a set of frequency-
independent real vector fields implicitly satisfying all
boundary and edge conditions of the problem. These are
in fact the 3-component modes of a 2D-resonator coin-
ciding with the guide cross-section. The above position
leads to an explicit linear eigenvalue matrix equation that
is easily solved with minor computational effort. Numeri-
cal results produced by the present method are then com-
pared with data reported in literature, showing very good
agreement.

II. THEORY

We report without derivation the field equations for the
propagation of the transverse field along the guide, in
absence of sources:
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where: Et(x,y,z)=Et(x,y)e-γz, Ht(x,y,z)=Ht(x,y)e-γz are the
trasverse components (respect to the z-direction) of the
hybrid field. We consider the permeability tensor µµ in its
general form, with 3x3 components:
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In eqs.(1) µzt is the row vector (µzx, µzy), µtz is the column
vector (µxz, µyz) and µtt is the transverse-to-transverse
block of µr. Dually, generalized telegrapher’s equation for
the tensor εε can be derived.
By considering the longitudinal magnetization as in [3]
the tensor µµr reduces to:
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Setting in (1) µµtz=0, µµzt=0 we derive:

( ) ( )ttttt EzEzH ×⋅∇∇−×=
∂
∂

− ˆ
1

ˆ
0

0

zz

r j
j

z µµω
εεω (2a)

( ) ( )zHzHE ttttt
ˆ

1
ˆ

0

0 ×⋅∇∇−×=
∂
∂

−
r

tt j
j

z εεω
µµω (2b)

with 







−

=
µ

µ
µ

p

p

tt jk

jk
(3)

In the case of partially or totally ferrite filled waveguide
propagation is hybrid in general. The resulting modes are
called: i) EH-modes if Ez is dominant, ii) HE-modes if Hz

is dominant, [3]. We now select the actual modes taken at
cut-off as the expanding set for the transverse field by
setting γ=0 in eq.(1). Consequently, the hybrid modes
propagating in the normal z-direction reduce to pure real
TE/TM modes. In particular, HE modes reduce to TE
modes and EH modes reduce to TM modes. In fact, at
cut-off:
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Now we expand the transverse fields as:
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where the k-index spans the TE (h) modes and the TM (e)
modes. etk

, htk
 are real and frequency-independent whe-

reas the expansion coefficients Vk
e, Vk

h, Ik
e, Ik

h contain
the frequency dependence. It can be also be seen from (2)
that the TE/TM components at cutoff are solutions of the
following transverse equations:
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Now by substituting eqs.(5) in (2) and exploiting the
above properties (6) and (7), we derive a particularly sim-
ple, discretized matrix version of (2).
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where ωcek ,ωchk is the k-cutoff frequency for the k- TM/TE
component, respectively. A, C, D, F and G are square-
matrices (n x n) obtained by forming the scalar products
between (htk

* x z), etk, (k=1,…,n) and the discretized
equation version of (2a) and (2b) x z, respectively. Surfa-
ce integration is performed over the cross section S. The
above real matrices represent the overlapping of the ex-
panding cut-off modes. For example:
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A21 is the Hermitian conjugate of A12. Each of the two
systems (9a) and (9b) is constituted by 2n-linear equa-
tions for the 4n unknown expanding coefficients Vk

h, Vk
e,

Ik
h, Ik

e, (k=1..n); therefore (9a) and (9b) can be combined
in order to form a single system characterized by 2n
equations for Vk

h, Vk
e, (or Ik

h, Ik
e); its determinant is a

polynomial equation for the square of the complex propa-
gation constant, γ2. Now, if we pre-multiply (9a) by A-1

(the inverse of A, assumed non-singular) divide both
members by γ and substitute I from the above equation in
(9b), we obtain:
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In the above eq.(10) we recognize a generalized eigenva-
lue problem for γ2, whose derivation was our main con-
cern. Once the frequency is fixed, each eigenvalue γ2(ω)
also yields the corresponding eigenvector V, which, in
turn, gives the transverse modal electric field Et in (5a).
The other eigenvector, I producing Ht in (5b), can be
easily derived from (9a). The longitudinal components Ez

and Hz are evaluated in terms of the transverse field, as in
[8].

III. RESULTS

The method described above is now applied to the
problem of finding cutoff planes and phase constants for
various TE and TM modes of cylindrical waveguides
containing longitudinally magnetized ferrite. Fig.1 shows
the analyzed ferrite loaded waveguide with electric walls
and radius a. As discussed in the previous section, the
first step of the method is an initial calculation and stor-
age of cutoff frequencies and fields of the TE/TM modes.
This is done by setting a priori γ=0 in the curl equations
and solving two decoupled scalar wave equations. In fig.
2, we report the cutoff planes for the first three modes; we
have k0aεf

1/2 versus kp/µ, being εf
 the dielectric constant of

the ferrite and kp, µ elements of the the tensor µµ defined
in (1). We observe that HEmn, (TEmn) modes are independ-
ent of the magnetization, while EHmn (TMmn) modes have
cutoff numbers increasing with kp. The results obtained
by the present method are compared with those reported
in [3], [7], with very good agreement. Now we insert the
above calculated cutoff modes in (5) and solve eq.(10).
We then use its solutions in the transverse field expansion
(5) in order to form the “modes” of the present method.
The simplest choice is to insert a single TE or TM mode
(k=1) in order to reconstruct the dispersion curves re-
ported in the literature and compare results. In Fig.3 we
calculate the phase constant for the dominant HE11 mode,
(β/k0 versus kp/µ) The results are compared to the ones in
[7], with very good agreement. An important property of
the waveguide being analyzed is that while the phase con-
stant of its dominant HE11 mode splits in two curves (de-
noted as HE11, HE11), the corresponding cutoff number
does not.

Fig.4 shows the phase constants for the second and third
modes with k0a=0.75, where k0 is the free-space wave
number. Fig.5 shows the first three modes with k0a=1,
respectively. Now we analyze the partially-filled
waveguide. In Fig.6 we report the propagation curves
(β/k0 versus b/a) as a function of the parameter  kp, (µ=1),
being a and b the radii of the waveguide and of the load-
ing ferrite, respectively. It is noteworthy to note that all
curves together are calculated in the computing time of
some CPU-seconds on a normal 500 MHz PC. Neither
spurious solutions are present nor difficulty is found in
tracking modal dispersion curves.

IV. CONCLUSIONS

The authors present a novel approach to the full-wave
analysis of the propagation in ferrite-loaded waveguide.
This is based on the explicit eigenvalue formulation of the
generalized vector telegrapher’s equations applied to the
anisotropic uniform waveguide, and discretized by using
the modes taken at cut-off as an expanding set. The re-
sulting algorithm is theoretically compact, efficient and
able to find and trace very many dispersion curves and
fields with extremely low computational CPU-time and
no spurious solutions.

Theoretical results are compared with data in literature,
for the first modes, with very good agreement.

REFERENCES

[1] Joseph Helszajn, “Microwave engineering: passive, active and non-
reciprocal circuits”, McGraw-Hill, Book Company pp. 274-303.

[2] Robert.E. Collin,“Foundations for Microwave Engineering”, Second
Edition, McGraw-Hill,inc., 1992 pp.464-476

[3] J. Helszajn, “Ferrite Phase Shifter and Control Devices”, McGraw-
Hill Com. (UK), 1989.

[4] P. J. B. Clarricoats, “Some properties of circular waveguides con-
taining ferrites”, Proc. IEE, Vol. 104, Part B, Suppl. 6, p. 286, 1957.

[5] H. Suhl and L. R. Walker, “Topics in guided-wave propagation
through gyro-magnetic media, part 1, the completely filled cylindrical
guide”, Bell Sys. Tech. J., Vol.33, pp. 579-659, May 1954.

[6] M. L. Kales,  “Topics in guided-wave propagation in magnetized
ferrites,” Proc. IRE, Vol. 44, pp.1404-1405, October 1956.

[7] B. M. Dillon, A, P. Gibson and J.P. Webb,  “Cut-off and phase con-
stants of partially filled axially magnetized, gyromagnetic waveguides
using finite elements”, IEEE Trans. Microwave Theory Tech., Vol.
41, No. 5, May 1993,  pp.803-807.

[8] T. Rozzi, L. Pierantoni, and M. Farina “Eigenvalue approach to the
efficient determination of the hybrid and complex spectrum of inho-
mogeneous, closed waveguide”, IEEE Trans Microwave Theory
Tech.,  Vol. 45, No 3, pp.345-353, March 1997.

[9] N. Marcuvitz and J.Schwinger, “On the representation of the electric
and magnetic fields produced by currents and discontinuities in wave
guides”, Journal of Applied Physics, Vol. 22, June 1851, pp. 806-
820.

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



4

Fig.1.Cylindrical waveguide of radius a containing a co-
axial ferrite cylinder of radius b, longitudinally magnet-
ized.

Fig.4. Phase constants for the second and third modes with
k0a=0.75. Present method: continuous lines. Data from [6]:
squares.

Fig. 2 Cutoff planes for the first three TE/TM modes
(k0aεf

1/2 versus kp/µ) calculated by the present method
(continuos lines) and compared with those from [6],
(squares).

Fig.5. Phase constants for the first three modes with k0a=1.
Present method: continuous lines.

Fig. 3 Phase constant for the dominant HE11 mode,
(β/k0 -kp/µ) compared with data in [6]. Present method:
continuous line. Data from [6]: squares.

Fig.6 Partially filled waveguide. Propagation curves
(β/k0 versus b/a) as a function of kp, (µ=1).
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